Justin Borevitz

Key Recent Papers

JG Bragg, MA Supple, RL Andrew, JO Borevitz Genomic variation across landscapes: insights and applications New Phytologist (2015)

Grabowski PP, Morris GP, Casler MD, Borevitz JO. Population genomic variation reveals roles of history, adaptation and ploidy in switchgrass. Mol Ecol. 2014 Jun  (online)

Brown TB, Cheng R, Sirault XR, Rungrat T, Murray KD, Trtilek M, Furbank RT, Badger M, Pogson BJ, Borevitz JO. TraitCapture: genomic and environment modelling of plant phenomic data. Curr Opin Plant Biol. 2014 Apr (online)

Li Y, Cheng R, Spokas KA, Palmer AA, Borevitz JO. Genetic Variation for Life History Sensitivity to Seasonal Warming in Arabidopsis thaliana. Genetics. Feb 2014 (online)

Xu Zhang, Ron Hauss, Justin Borevitz. Natural Genetic Variation for Growth and Development Revealed by High-Throughput Phenotyping in Arabidopsis thaliana (G3 genetics Jan 2012) (Online)

Benjamin Brachi, Geoff Morris, Justin Borevitz. Genome Wide Association Studies in Plants: The missing heritability is in the field. Genome Biology, Oct 28, 2011. (online)

Li Y, Huang Y, Bergelson J, Nordborg M, Borevitz JO. Association Mapping of Local Climate Sensitive QTL in Arabidopsis thaliana. PNAS, Nov 15, 2010. (Online)


Full Pubmed Listing

pubmed: borevitz,justin[auth...

NCBI: db=pubmed; Term=borevitz,justin[Author - Full]

Related Articles

Extending the Genotype in Brachypodium by Including DNA Methylation Reveals a Joint Contribution with Genetics on Adaptive Traits.

G3 (Bethesda). 2020 Mar 04;:

Authors: Eichten SR, Srivastava A, Reddiex AJ, Ganguly DR, Heussler A, Streich JC, Wilson PB, Borevitz JO

Epigenomic changes have been considered a potential missing link underlying phenotypic variation in quantitative traits but is potentially confounded with the underlying DNA sequence variation. Although the concept of epigenetic inheritance has been discussed in depth, there have been few studies attempting to directly dissect the amount of epigenomic variation within inbred natural populations while also accounting for genetic diversity. By using known genetic relationships between Brachypodium lines, multiple sets of nearly identical accession families were selected for phenotypic studies and DNA methylome profiling to investigate the dual role of (epi)genetics under simulated natural seasonal climate conditions. Despite reduced genetic diversity, appreciable phenotypic variation was still observable in the measured traits (height, leaf width and length, tiller count, flowering time, ear count) between as well as within the inbred accessions. However, with reduced genetic diversity there was diminished variation in DNA methylation within families. Mixed-effects linear modelling revealed large genetic differences between families and a minor contribution of DNA methylation variation on phenotypic variation in select traits. Taken together, this analysis suggests a limited but significant contribution of DNA methylation towards heritable phenotypic variation relative to genetic differences.

PMID: 32132166 [PubMed - as supplied by publisher]