Tim Brown – Postdoctoral Fellow & technology wrangler


Photo: Tim capturing a gigapixel image of Alta Ski Area in the Wasatch Mountains, UT, USA as part of the Alta Bark Beetle Survey project (Use the slider to explore the image).

Email/Contact: here

CV (PDF)

Rio Mesa Phenocam Tower and sap flux site

Rio Mesa Phenocam Tower

Background and Research

My interests are in using emerging camera technologies to facilitate next generation ecology research across scales from genomics studies in growth chambers to high-resolution phenological research at the landscape level. Growth chamber studies allow highly targeted dissection of the genetic basis of plant growth and development. At the ecosystem level, the Next Gen ecosystem monitoring tools we are developing enable landscape-scale phenology studies and targeted genetic analysis of thousands of individuals in wild plant populations.

Throughout my academic career, I have chosen to tackle high complexity research questions requiring solutions that extend the boundaries of what is technically possible. My PhD research, modeling swarming behavior in Eciton burchellii army ants (1999-2006), combined challenging fieldwork with advanced computational modeling and numerical analysis. I filmed army ants in the field in Costa Rica, taught myself to program and then wrote software to track manually the position of 30,000 ants in the swarm videos. With these data I built the first individual-based model of army ant swarming behavior parameterized from field-collected data.

Ecosystems emerge out of a complex mix of environmental drivers affecting interconnected individuals and populations with unique genetic histories assembled by geologic history, interacting across scales from the microscopic to the landscape. Conservation ecology is challenged by the fact that the ecosystems we seek to understand are large and highly complex. Yet standard research tools typically provide low complexity, small spatial resolution data with little or no information on the genetic structure of the population.

Prototype Gigavision Camera in Utah

Prototype gigapixel camera

After finishing my PhD, I co-founded my company TimeScience in 2006 to create better tools for scientists to record, analyze and visualize long‑timescale environmental change. Over the last 6 years I have worked on numerous projects that have improved the ability of researchers to collect ecological data, understand bio-control efforts and invasive species impacts, improve resource management and enhance public outreach and science education (see Recent Projects).

My scientific interests have also evolved over this time from an initial goal of visualizing long-term environmental change, to using emerging camera and internet technologies to enable very high resolution, high throughput phenotyping of plants across scales from highly controlled greenhouse studies to multi-hectare field sites. The Internet and emerging data standards projects can give us the ability to rapidly share these types of data nationally and globally. I strongly believe that these are the tools that will enable next-generation ecology, allowing us to understand both ecosystem function and crop science at the level required to solve the ecological challenges of this century.

I pursued a PhD focused on complexity theory in part to better understand how the emergence of the Internet and the massive increase in computing technology and human interconnectivity might impact the rate at which humans address challenging social and environmental problems. The problem-solving abilities of complex networks are directly tied to the rate and quality of information discovery, and the rate that this information can be transmitted through the network (Camezine et al. 2003. Self-organization in Biological Systems). When ecology is viewed from a network-science perspective, I believe it is clear that solving the pressing ecological challenges of our times requires (1) an exponential increase in the quantity and complexity of data that we are able collect and analyze, and (2) highly accessible, networked data sharing tools that provide researchers with the means to rapidly build off of current and previous work.

My work with the Borevitz Lab represents where I see my unique skill set being best applied to help address the challenges outlined above. I can contribute my skills in new technology development, advanced numeric modeling and data analysis to understanding some of the core scientific questions in plant developmental genetics. Furthermore, the rapid rate of technological change gives us the opportunity to develop low-cost data discovery tools that can be widely used by others to advance the field. Finally, at the landscape and field site scale, the  analysis tools and camera systems developed for greenhouse work can be adapted to provide high-resolution “near-remote sensing” data streams to improve novel landscape monitoring capabilities and enhance existing data streams. This will enable us to examine population structure and target outlier populations for genetic analysis.

Current Projects

Growth Chamber Cameras and SpectralPhenoClimatron development

  • My primary work in the Borevitz Lab is developing a “seeds to traits” pipeline for high throughput phenotyping of plants in growth chambers and glasshouses
  • In the growth chambers we are developing the “SpectralPhenoClimatron” (SPC), a retrofitted Conviron growth chamber with 7-band multispectral LED lights, multiple high resolution cameras and dynamic growth conditions and lighting conditions.
  • The SPC system lets us dial in semi-realistic growing conditions for almost any region on the planet and grow plants under those lighting, temp and humidity conditions.
  • We can monitor up to 300 plants per chamber (300×300 px per plant resolution) at 20 minute intervals.
  • More details on the SpectralPhenoClimatron project here.
  • Click here for the  live Cameras page

Glasshouse (greenhouse) timelapse camera systems

  • I am equipping the new ANU NCRIS funded  Eucalyptus glasshouse with five 5-megapixel IP cameras per room to enable researchers to monitor their projects. Cameras and online visualization and image viewing systems should be online by Oct, 2014.
  • When the image processing pipeline is more developed, images from all the glasshouses will also be run through it to automate data extraction for plants grown under the cameras
AXIS 5MP IP cameras in the NCRIS "Darwinia" glasshouse

AXIS 5MP IP cameras in the NCRIS “Darwinia” glasshouse

Modified growth cabinet with LEDs and cameras

Modified growth cabinet with LEDs

National Arboretum Phenomic Sensor Array

  • We recently received an ANU Major Equipment Grant to instrument the ANU research forest at the National Arboretum with a “next-gen” phenomic sensor array.
  • Monitoring systems will include megapixel and gigapixel time-lapse cameras (see gigavision.org); a microclimate-mesh sensor network that measures temperature, humidity, and PAR above ground, soil moisture and temperature below ground and minute-resolution tree growth at 20 locations.
  • All data will be streamed live online to a data portal.
  • Project description and full proposal here.

TrayScan documentation and pipeline

NextGen data visualization tools

  • Figuring out how to provide intuitive interfaces for viewing the 2+ million images we generate a month is a challenge.
  • In addition to expanding the capabilities of our existing online and kiosk systems I’m testing some of the awesome new crop of novel interfaces like the LeapMotion controller and the Oculus Rift.

Phenomics data pipeline – G2P (Genes to Phenology)

Gigapixel imaging

Gigavision Timelapse Camera

  • Gigavision Project Page
  • Current work:
    • Fundraising to move Gigavision stitcher software to National Computing Infrastructure cloud via a qCloud grant through Queensland University of Technology
      • Moving the stitcher and data management tools to the cloud will let us provide deploy sub-$10K gigapixel imaging systems to field sites throughout Australia.
    • Streamlining the Gigavision stitcher and visualizations tools
    • Processing existing Gigavision datasets
    • Gigavision Data Paper
    • Developing VAPIX-based control software so we can use any VAPIX enabled HD-PTZ camera to capture gigapixel timelapse.

Gigapan Imaging

  • The Gigapan is a low cost sommercially available robotic pan/tilt head that makes it super-easy to capture huge panoramas
  • I shoot a lot of Gigapans and I am working to set up time-series gigapixel capture locations at our field sites around NSW.
    • My gigapans are all online here

Past Projects

Since I’ve been out of Academia running a business for the last 6 years, the projects I’ve worked on at TimeScience are a better metric of my skills and interests than my publications.

1       Alta Bark Beetle Gigapixel Imaging Project. 2011-2012. Designed and implemented protocols and  monitoring plan to incorporate the use of gigapixel resolution imagery for early detection of bark beetle outbreaks at Alta Ski area. Gigapixel imagery augments traditional aerial surveys, allowing the ski area a low-cost meant to survey every tree in a ~800ha area at a resolution of about 1 pixel/10cm2. Project Gigapans: http://bit.ly/AltaBeetle2011). Presentation and project details (PDF).

2       Utah Museum of Natural History Interactive Construction Time lapse. 2012. TimeScience filmed the 3-year construction of the UMNH building. We then designed and built an interactive “TimeWindow” kiosk system for installation in the museum. The TimeWindow permits users to spin a dial to view the entire time lapse in seconds then zoom in to time-regions of interest to watch changes unfold on a minute or hourly time-scale.
Website: View interactive timelaspse online

3       Utah Sky Exhibit. 2011. Natural History Museum of Utah. Utah Sky is an interactive exhibit that combines high resolution time-lapse imagery with live weather data to teach visitors about weather cycles in the Salt Lake Valley. I was the lead project manager for the TimeScience components in this exhibit and provided back-end programing for weather data integration.

4       Gigavision – A billion pixel resolution solar powered time-lapse camera for monitoring every plant in the landscape. 2010 to present. Lead project manager and hardware and software engineer; responsible for design of all system hardware and control software and field installations.
Website: http://www.gigavision.org. See also  Brown, 2012.

5       TimeCam.TV. 2010. TimeCam is an online system for providing automated timelapse and dynamic movie playback for any online camera. Co-designer of all front-end and back-end software and server tools.
Website: http://www.timecam.tv.

6       TimeGraph. 2010. TimeGraph is an online data visualization system for integrating time-series image data and weather sensor data into an interactive interface to enhance scientific collaboration, promote data sharing and provide “virtual lab” educational tools. Lead project manager. Co-designer of software and online interface. Example: ufsn-data.chpc.utah.edu/crfs.htm

7       Virgin River phenocam tower and wireless network. 2011. The Virgin River phenocam tower is an 11-meter tower in a remote location on the Virgin River in SE Nevada, USA for monitoring plant responses to an introduced bio-control herbivorous beetle. Installed monitoring systems include 3 RGB and 2 NIR imaging systems, automated PC data collection with remote data syncing via 3G wireless and a 250W solar power system. The project also included installation of a webserver and high capacity hard drive systems to support storage and online visualization of phenological data from all our Utah and Nevada desert research projects. I designed, built and installed all monitoring, solar and wireless systems and sourced and oversaw the tower installation. I also installed and configured the webserver and built the website to host the data.
Website: http://phenocam.org. References: See also pubs.

8       Rio Mesa field station phenocam tower system and wireless network. 2008. The Rio Mesa phenocam tower system consists of two 10-meter monitoring towers installed in a remote field site in SE Utah, USA. Both towers house multiple visible and infrared camera for monitoring plant responses to an introduced bio-control herbivorous beetle. I also designed and installed a solar powered wireless mesh network that provides wireless connectivity over the 120ha area of the field station. Lead project manager for camera and solar systems and wireless network installation and maintenance.
References: See pubs.

9       MealReader 2.0. 2008. Custom Matlab package for analyzing rodent feeding behavior.
References: 1) Torregrossa, A.-M., Azzara, A. V. and Dearing, M. D. (2011) Differential regulation of plant secondary compounds by herbivorous rodents. Functional Ecology, 25: 1232–1240. doi: 10.1111/j.1365-2435.2011.01896.x (PDF). 2) Torregrossa, A-M; Azzara, AV and Dearing, MD. (2012) Testing the diet breadth trade-off hypothesis: differential regulations of novel plant secondary compounds by a specialist and generalist herbivore. Oecologia, 168:711-718. (PDF).

10   TimeSystem. 2007 – 2009. TimeSystem is an advanced visualization tool for recording and analyzing time-series image sets and numeric data. Lead project manager; software designer.
Website: http://www.time-science.com/timescience/products_timesystem.asp. References:  1) Adam Nelson, Colson, K.E., Harmon, S. and Potts, W.K. 2013. Rapid adaptation to mammalian sociality via sexually selected traits. BMC Evolutionary Biology 2013, 13:81 doi:10.1186/1471-2148-13-81 . (PDF). 2) Adam Nelson, AC & Potts, W.K. (In prep). Rapid adaptation to sociality involves increased MUP expression in house mice.

11   MouseCam. 2007. A 9-camera monitoring system with integrated RFID monitoring for field analysis of mouse behavior and Hantavirus disease dynamics. Lead project manager and hardware designer. Software programmer. References: 1) Dearing, MD and Dizney, L. (2010) Ecology of hantavirus in a changing world.  Annals of the New York Academy of Sciences 1195:99-112. (PDF)

12   Virtual Great Salt Lake Exhibit, Living Planet Aquarium, Salt Lake City Utah. 2006.  Edited new and existing content into a 20-minute video for an interactive educational exhibit about the Great Salt Lake, Utah. Created month-long video timelapse of Great Salt Lake and provided technology consultation.

Publications

  • Brown, Tim B., et al. TraitCapture: genomic and environment modelling of plant phenomic data. (2014). Current opinion in plant biology 18 (2014): 73-79.(PDF)
  • Nagler, P., Pearlstein, S., Glenn, E. P, Brown, T. B., et al. 2014.  Rapid dispersal of salt cedar (Tamarix spp.) bio-control beetles (Diorhabda carinulata) on a desert river detected by phenocams, MODIS imagery and ground observations. Remote Sensing of Environment 140. 206–219. (PDF)
  • Nagler, P. L., Brown, T. et al. 2012. Regional scale impacts of Tamarix leaf beetles (Diorhabda carinulata) on the water availability of western U.S. rivers as determined by multi-scale remote sensing methods. Remote Sensing of Environment, 118(0), 227-240. (PDF)
  • Brown, Timothy B., C. Zimmermann, W. Panneton, N. Noah, J. Borevitz. 2012. High-resolution, time-lapse imaging for ecosystem-scale phenotyping in the field. in: High Throughput Phenotyping in Plants. Methods in molecular biology. J. Normanly, ed. New York: Springer. (PDF)
  • PL Nagler, T Brown, KR Hultine, C van Riper, DW Bean, S Murray, S Pearlstein. 2010. Monitoring impacts of Tamarix leaf beetles (Diorhabda elongata) on the leaf phenology and water use of Tamarix spp. using ground and remote sensing methods.  AGU Fall Meeting Abstracts 1, 0320. (PDF)
  • PL Nagler, T Brown, PE Dennison, KR Hultine, EP Glenn. 2009. Using Webcam Technology for Measuring and Scaling Phenology of Tamarisk (Tamarix ramosissima) Infested with the Biocontrol Beetle (Diorhabda carinulata) on the Dolores River, Utah. AGU Fall Meeting Abstracts 1, 0389. (PDF)
  • Brown, Timothy B. 2006. Biology and Modeling of Self-Organization in the New World army and Eciton burchellii. PhD Thesis. Dept. of Biology, University of Utah. 116 pp. (PDF)